

## Theory Q1 RF reflectometry for spin readout for silicon quantum computing Marking scheme. Version 1.1

| Question | Total | Partial marks | Explanation for partial marks and special cases                                      |
|----------|-------|---------------|--------------------------------------------------------------------------------------|
| part     | marks |               |                                                                                      |
| A.1      | 0.2   | 0.1           | Velocity dimensionally correct and is less than c                                    |
|          |       | 0.1           | Correct final answer                                                                 |
|          |       |               | 0.2 total for correct answer with no justification                                   |
| A.2      | 0.2   | 0.1           | Applying Gauss theorem                                                               |
|          |       | 0.1           | Correct final answer                                                                 |
|          | 0.3   | 0.1           | Capacitance formula                                                                  |
|          |       | 0.1           | Electric potential formula                                                           |
|          |       | 0.1           | Correct final answer                                                                 |
| A.4      | 0.3   | 0.1           | Bio-Savart law or equivalent for magnetic field of a wire                            |
|          |       | 0.1           | Inductance formula                                                                   |
|          |       | 0.1           | Correct final answer                                                                 |
| A.5-i    | 0.8   | 0.1           | Adding one extra $\delta L$ , $\delta C$ link does not change the semi-infinite wire |
|          |       | 0.1           | Equating impedance the circuit with one extra link to $Z_0$                          |
|          |       | 0.1           | Sum of impedance in parallel (L and $Z_0$ )                                          |
|          |       | 0.1           | Sum of impedance in series                                                           |
|          |       | 0.1           | Correct equation for $Z_0$                                                           |
|          |       | 0.1           | Relating $\delta L$ , $\delta C$ to $L_x$ , $C_x$                                    |
|          |       | 0.1           | $\delta L \rightarrow 0$ limit simiplification                                       |
|          |       | 0.1           | Correct final answer                                                                 |
| A.5-ii   | 0.2   | 0.1           | Correct b/a formula                                                                  |
|          |       | 0.1           | Correct final answer                                                                 |
| B.1      | 1     | 0.1           | $Z_0$ in terms of $L_x$ , $C_x$                                                      |
|          |       | 0.2           | Method of images                                                                     |
|          |       | 0.1           | Magnetic flux and its relation to $L_x$                                              |
|          |       | 0.1           | Adding B-fields of the real and the imaginary wires                                  |
|          |       | 0.1           | Correct $L_x$                                                                        |
|          |       | 0.1           | Potential and its relation to $C_x$                                                  |
|          |       | 0.1           | Adding E fields of two wires                                                         |
|          |       | 0.1           | Capacitance per length $C_x$                                                         |
|          | -     | 0.1           | Final result for $Z_0$                                                               |
| C.1      | 1     | 0.1           | Starting with a workable approach (would lead to answer if followed through)         |
|          |       | 0.1           | Concept of equating voltage amplitudes                                               |
|          |       | 0.1           | Correct voltage matching equation                                                    |
|          |       | 0.1           |                                                                                      |
|          |       | 0.2           | Current conservation equation (-0.1 if signs are wrong)                              |
|          |       | 0.1           | Apply Omh's law                                                                      |
|          |       | 0.1           | Correct equation to solve for $V_r/V_i$                                              |
|          |       | 0.1           | Solving the equation                                                                 |
|          |       | 0.1           | Final answer in term of $\Gamma$                                                     |
|          |       |               | Proof of work required. Max 0.2 for stating the answer with no proof                 |
| C.2      | 0.2   | 0.1           | $\pi$ -shift of reflected signal implies $\Gamma$ < 0                                |
|          |       | 0.1           | Correct condition stated                                                             |

| D.1(i)  | 1   |     | A variety of approaches acceptable if lead to correct answer                                         |
|---------|-----|-----|------------------------------------------------------------------------------------------------------|
| 0.1(1)  |     | 0.1 | Charge on QD equals $-ne$                                                                            |
|         |     | 0.3 | Treat charge on the QD as the charge on $C_q$ (neglecting tunnel junctions)                          |
|         |     | 0.3 | Voltage drop across capacitor computed correctly                                                     |
|         |     | 0.3 | Equation for $\varphi_n$ in terms of sum of voltages(-0.1 if signs are wrong)                        |
|         |     |     | <ul> <li>-0.1 if the term with ½ is missing</li> </ul>                                               |
| D.1(ii) | 0.5 |     | A variety of approaches acceptable if lead to correct answer                                         |
| ( )     |     | 0.1 | Relation between energy and potential                                                                |
|         |     | 0.3 | Correct intermediate formula for $\Delta E_n$                                                        |
|         |     | 0.1 | Correct final answer                                                                                 |
| D.2     | 0.5 | 0.2 | A difference of $\Delta E_n$ and $\Delta E_{n+1}$ considered                                         |
|         |     | 0.1 | Use the formula from D.1(ii) for $\Delta E_n$ .                                                      |
|         |     | 0.2 | Correct final answer                                                                                 |
| D.3     | 0.5 | 0.2 | $k_B T$ identified the relevant thermal energy                                                       |
|         |     | 0.2 | $E_c$ identified as the relevant scale for electron energy                                           |
|         |     | 0.1 | Correct final answer                                                                                 |
|         |     |     | <ul> <li>no penalty for numerical prefactors of order 1 or using &lt;&lt; instead of &lt;</li> </ul> |
| D.4     | 0.8 | 0.2 | $\tau \sim R_t C_t$ tau on order of RC                                                               |
|         |     | 0.3 | $h/\tau$ is identified as relevant scale for the fluctuation energy                                  |
|         |     | 0.1 | $E_c$ identified as the relevant scale for electron energy                                           |
|         |     | 0.2 | Correct comparison sign and correct final answer                                                     |
|         |     |     | • answer for $	au$ without justification acceptable                                                  |
|         |     |     | <ul> <li>no penalty for numerical prefactors of order 1 or using &lt;&lt; instead of &lt;</li> </ul> |
| E.1     | 0.2 | 0.1 | At least one of $\Gamma$ computed correctly                                                          |
|         |     | 0.1 | Correct final answer                                                                                 |
| E.2     | 0.8 | 0.1 | Understand $\Delta\Gamma\sim 1$ requires change in $Z_{tot}$ on the order of $Z_0$                   |
|         |     | 0.1 | Identifying OFF state as an LC circuit                                                               |
|         |     | 0.2 | Choosing $L_0$ from the LC resonance condition                                                       |
|         |     | 0.1 | Calculate $\Gamma_{OFF}$                                                                             |
|         |     | 0.1 | Correct $Z_{tot}$ for ON state                                                                       |
|         |     | 0.1 | Correct numerical answer for $L_0$                                                                   |
|         |     | 0.1 | Correct numerical answer for $\Gamma_{ON}$                                                           |
| F.1     | 1   | 0.1 | Calculate $Z_{tot}$ for OFF state                                                                    |
|         |     | 0.2 | Choosing $\omega_{rf}$ to match a resonance                                                          |
|         |     | 0.2 | Calculate $Z_{tot}$ for ON state                                                                     |
|         |     | 0.3 | Connect $\Delta\Gamma \sim 1$ with $Z_{tot}$ values                                                  |
|         |     | 0.2 | Correct calculation and final answer                                                                 |
| F.2     | 0.5 | 0.1 | Diagram with the added element is functional                                                         |
|         |     | 0.2 | Capacitance in series with the rest of the circuit                                                   |
|         |     | 0.1 | Demonstrate that the added element leads to $\Delta\Gamma \sim 1$                                    |
|         |     | 0.1 | Correct formula characterizing the added element                                                     |