

RF Reflectometry of Single-Electron Circuits

Part A: Lumped element model of a co-axial transmission line (2.0 points)

A.1 (0.2 pt) v =
A.2 (0.2 pt) E(r) =
A.5 (1.0 pt) i.
ii. $b/a =$

Part B: Hypothetical transmission line with return along a grounded plane (1.0 points)

B.1 (1.0 pt) $Z_0 =$

Part C: Basics of RF reflectometry (1.2 points)

 $\begin{array}{l} \textbf{C.1} \ (1.0 \ \mathrm{pt}) \\ \Gamma = \end{array}$

 $\textbf{C.2} \; (0.2 \; \mathrm{pt})$

Part D: The single electron transistor (points 3.3)

D.1 (1.5 pt) i. $\varphi_n =$ ii. $\Delta E_n =$

D.2 (0.5 pt)
$$E_c =$$

D.3 (0.5 pt)

 $\begin{array}{l} \textbf{D.4} \left(0.8 \; \mathrm{pt}\right) \\ \textbf{i.} \; \tau = \\ \textbf{ii.} \end{array}$

Part E: RF reflectometry to read out SET state (1.0 points)

E.1 (0.2 pt) $\Delta\Gamma =$

 $\begin{array}{l} \textbf{E.2} \ (0.8 \ \mathrm{pt}) \\ L_0 = \\ \Delta \Gamma = \end{array}$

Part F: Charge sensing with a single lead quantum dot (1.5 points)

 $\begin{array}{l} \textbf{F.1} \ (1.0 \ \mathrm{pt}) \\ \omega_{\mathrm{rf}} = \\ Z_C = \end{array}$

F.2 (0.5 pt)